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Abstract The chemical potential of continuously deformable chain molecules can be estimated 
by measuring the average Rosenbluth weight associated with the virfual insertion of a molecule. 
We show how to generalize the overlappingdistribution method of Bennett CO histograms of 
Rosenbluth weights In this way we anive at a scheme to estimate chemical potentials of chain 
molecules that is a direct generalization of the Shing-Gubbins scheme for simple molecules. In 
particular, our overlapping-disuibution method has the nice diagnostic fwure  that it can detect 
systematic sampling problems that may occur for long chains and high densitics. We apply the 
method to the computation of the chemical potential of flexible chains of hard spheres and find 
that, for the systems studied, systematic sampling mors are less imponant than statistical errors. 

1. Introduction 

The chemical potential is a key quantity in the numerical study of phase coexistence. In 
equilibrium, the chemical potential of each species has to be the same in the coexisting 
phases. The most widely used method to compute chemical potentials in moderately dense 
fluids is the test-particle method of Widom [I] .  This scheme is based on an expression that 
relates the excess chemical potential, pa. and the average Boltmann factor of the energy, 
U,,,, of a 'test' particle that is inserted at a random position in the system: 

(1) 
where the angular brackets denote ensemble averaging and ,5' = l/keT. For systems 
with repulsive intermolecular interactions, (e-pUl*c) can be interpreted as the probability of 
acceptance of a (virtual) Monte Carlo move in which a particle is added at random to 
the system. In principle, the Widom insertion technique can be used for any fluid, but in 
practice it is limited to small particles and to systems at low or moderate densities. To 
obtain a reliable estimate of the insertion probability, (e-p"-l). and as such an accurate 
value for the chemical potential, it is necessary to reach regions of configurational space 
where the energy U,,, is low. For systems at high densities, and in the case of large 
molecules even at moderate densities. the vast majority of random insertions results in an 
overlap with the repulsive core of a particle in the system, and contributes negligibly to the 
insertion probability. Under these circumstances, astronomically long simulations would be 
required in order to obtain pex with good statistical accuracy (a more quantitative estimate 
of the computational effort required can be found in [Z]). In a simulation that is too short, 
those fluid configurations that contribute most to (exp[-U,,/k~T]) would be inadequately 
sampled, and incorrect (too high) estimates for pex result. Shing and Gubbins devised a 
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scheme to measure excess chemical potentials in such a way that sampling problems are 
automatically detected [3]. The Shing-Gubbins method is a special case of the overlapping- 
distribution method of Bennett [4]. The basic idea behind the Shing-Gubbins scheme is to 
combine particle insertions (that tend to probe high-energy states) with virtual trial moves 
in which a real particle is removed from the system (real particles will typically be situated 
in regions of space %*here the potential energy is not high). In the overlapping-distribution 
method, a histogram (po(AU)) is made that measures the probability of finding a potential 
energy change AU on insertion of an ( N +  I)th particle in a system of N particles. Similarly, 
a histogram pt (AV) measures the probability of finding a potential energy change AU on 
particle removal from a system of N + 1 particles. If there is a range of AU where these 
histograms overlap, we have [3, 41 
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= In p o ( A U )  - 6 A U  + ppex (2) 

where U ( r N )  is the total energy of the system of N particles at positions r N ,  and U ( T N + I )  
is the interaction energy of the ( N +  1)th particle at position rNtl with the other N particles 
present. Z ( N ,  V,T) = ( 1 / A ” N ! ) ~ d r N e x p [ - @ U ( r N ) ]  is the partition function of an 
N-particle system, with A-3N a temperature-dependent factor that results upon integration 
over all momenta. For atomic systems, A U the thermal de Broglie wave length. This 
method has the same range of applicability as the test-particle method but, in addition, it 
is possible to judge the reliability of the results by checking whether po(AU)  and p l ( A U )  
can indeed be measured accurately in a region of AU where they overlap. 

The limitations of the particle insertion technique to calculate chemical potentials of 
atomic particles are even more serious for chain molecules. In fact, the test-particle method 
breaks down for chains longer than four or five segments, for all but the lowest densities IS]. 
Recently, we have shown that by using a biased ,sampling scheme for continuously 
deformable chain molecules [9], the test-particle method can be used to calculate chemical 
potentials for appreciately longer chains. This modified particle insertion is based on a 
generalization [7, 81 of the Rosenbluth sampling scheme for chain molecules [6]. To judge 
the reliability of the Rosenbluth sampling technique for continuously deformable chain 
molecules, it is desirable to use a diagnostic tool, such as the overlapping-distribution 
method, in combination with Rosenbluth sampling. In the present article we show how this 
can be achieved. In the following section we derive our overlapping-distribution method. In 
the third section we present the results of chemical-potential calculations for a filly flexible 
chain of hard spheres in a hard-sphere fluid. 

2. Chemical-potential calculations by Rosenbluth sampling 

2. I .  Rosenbluth sampling 

In Rosenbluth sampling, chain configurations are generated step by step by successive 
insertion of the bonded segments of the chain. When the positions are chosen at random, 
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it is very likely that one of the segments will overlap with another particle in the system, 
which results in  a rejection of the trial move. The Rosenbluth sampling scheme increases 
the insertion probability by looking one step ahead. On lattices the availability (i.e. the 
Boltzmann factor) of all sites adjacent to the previous segment should be tested. In 
continuous space there is, in principle, an infinite number of positions that should be tested 
(e.g. in the case of a flexible chain molecule with rigid bonds, all points on the surface 
of a sphere with a radius equal to the bond length). Of course, it is not feasible to scan 
an infinite number of possibilities. Fortunately, however, it turns out that it is possible 
to construct a correct Monte Carlo scheme for off-lattice models in which only a finite 
number of trial segments (k) is selected either at random or, more generally, drawn from 
the distribution, Pid, of bond lengths and bond angles of the 'ideal' chain molecule. By 
an 'ideal' chain molecule we mean an isolated chain that has the same bond, bending, 
and torsion potentials as the real molecule under study, while all non-bonded interactions 
(intra- and inter-molecular) are set to zero. An ideal chain molecule will, in general, be 
non-self-avoiding. Later on, we shall take both the intermolecular and the non-bonded intra- 
molecular interactions into account. For an ideal chain molecule, we can easily generate 
conformations with the correct Boltzmann weight. More generally, if we construct an 
ideal chain step by step, we can select several trial directions for the next segment with a 
probability that is determined by the bonded interactions, Uid, only: 

where rij is the jth trial direction for the ith segment, and Zjd = J d r i i  e-'"% which is 
the same for every j. From here on, the procedure that we follow is the same for lattices 
and continuous-space systems. For each of the trial positions, we compute the Boltzmann 
factor associated with the non-'bonded interactions Unb (both intra- and inter-molecular). 
One of these trial positions, rj, is then selected with a probability, P, proportional to its 
Boltzmann factor 

where 2, = E:=, e-"':. In this way, regions of high potential energy, such as the hard 
core of another particle, are avoided and configurations with a non-vanishing Boltzmann 
weight are generated. To correct for the bias introduced by this very non-random sampling 
procedure, a weight has to be assigned to each conformation, r, called the Rosenbluth 
weight W, [6]. The contribution of each ith segment to this Rosenbluth weight is equal to 
the average of the Boltzmann factors of the trial positions for this segment: 

(5 )  

where U;: is the non-bonded energy of the j th  trial direction for the ith segment. The 
Rosenbluth weight of the total configuration, I?, is the product of the weights of the 
individual segments, including the Boltzmann factor of the energy of the first segment, 
Ur,: 



3882 

2.2. Test-particle Rosenbluth method 

As was shown in [9], the chemical potential of chain molecules in a fluid can be 
calculated from the average Rosenbluth weight of test chains inserted into the fluid. Chain 
configurations, r, are generated by first inserting a segment at a random position ro within 
the volume, V, of the fluid and by choosing for every following ith segment a set of trial 
directions ( ri j}~ial  ( j  = 1,  . . . , ki), from which the position Fi of the segment is chosen 
through the Rosenbluth procedure described above. The average Rosenbluth weight, ( W r ) N ,  
of these configurations is equal to 
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where the angular brackets (. . .)N denote ensemble averaging over all configurations of the 
N particles in the fluid, and {rij}mt denotes the remaining set of ki - 1 &ial directions that 
have not been selected while building up the chain conformation. ZN, ZN+,* and VZid are 
the partition functions of the fluid, the fluid plus the test chain, and the ideal chain molecule 
respectively. The partition function of the ideal molecule considered here is simply the 
product of the contributions from the individual segments. From equation (7) i t  follows that 

which means that the test-particle method to calculate excess chemical potentials can be 
combined with Rosenbluth sampling for chain molecules, simply by replacing the average 
Boltmann weight of the test chain by its average Rosenbluth weight. 

2.3. Overlapping-distribution Rosenbluth method 

Equation (8) can be applied to calculate chemical potentials of much longer chain molecules 
than the original test-particle method represented by equation (6) can handle. However, for 
high densities and for chains that are too long, it shares the weakness of the original method, 
namely that it may fail to sample regions of configurational space that have a high weight, 
in this case a high Rosenbluth weight. In fact, as is discussed in detail in the paper by 
BatouIis and Kremer [lo], the original Rosenbluth scheme suffers from exactly the same 
drawback. To be able to detect this failure and to judge the reliability of the results, we wish 
to combine Rosenbluth sampling with the overlapping-distribution method. This involves 
inserting a chain in an N-particle system as well as removing a chain from an equilibrium 
system in which the chain is dissolved. Simply removing an existing chain only yields 
the Boltzmann factor and not the Rosenbluth factor of the configuration. But, in order to 
be able to judge the reliability, it is necessary to check whether there is enough overlap 
between the distribution of Rosenbluth weights of chains that are inserted, and those that are 
to be removed. In order to calculate the Rosenbluth weight of an existing chain, the same 
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simple procedure can be applied as used in the configurational-bias Monte Carlo method 
that was also introduced in [9]. In this scheme, a Monte Carlo trial move is generated by 
constructing a new configuration using Rosenhluth sampling. In order to decide whether 
to accept the hial move, the Rosenbluth weight of the old chain needs to be calculated. 
To do so, around every segment ri of the existing chain, a set of k - 1 trial directions, 
(rij]Est, is drawn from the same probability distribution Pid, from which the directions are 
chosen when a chain is inserted. The Rosenbluth weight of the existing chain is calculated, 
by treating the k - 1 trial directions plw the direction in which the segment of rhe existing 
chain is situated, as the set of k 'trial' directions, [ rij}hd, for the existing conformation. 
The distribution of Rosenbluth weights found for removing chains is directly related to the 
distribution found for inserting chains. More precisely, if we denote the logarithm of the 
Rosenbluth weight of a configuration by In W 3 x ,  then we can measure the probability 
distributions p&) for chain insertions and p l ( x )  for chain removal. In the appendix we 
derive the relation between p&) and p ~ ( x )  explicitly. We show that from this relation the 
excess chemical potential can be obtained, because 

l n p ~ ( x ) = x + B C c ~ ' + I n p ~ ( x ) .  (9) 
Hence, by constructing a histogram of In W both for inserting a chain into a system and 
for removing a chain dissolved in that system, we can derive the excess chemical potential 
by studying In pj (x)  - In p&). As in the original overlapping-distribution method of 
Bennett [4] and Shing and Gubbins [3], the method works best if there is a range of 
x values where we have good statistics on both po(x)  and p l ( x ) .  The advantage of this 
overlapping-distribution Rosenbluth scheme over the simple test-particle Rosenbluth method 
is that, with the present method, sampling problems for long chains and high densities will 
manifest themselves as a breakdown of the overlap of PO and P I .  

Recently, de Pablo et a/ [I21 proposed an alternative extension of the Shing-Gubbins 
method to chain molecules. De Pablo er a/ do not consider a histogram in In W but a 
histogram in the energies, Ur, of the chain configurations r. In the appendiv we derive 
the relation that de Pablo et a/ [I21 used. In their approach, the average Rosenbluth weight 
found for inserted chains that have an energy Uj- = AU, (W)&,,, N, is measured. This 
quantity is related to the probability, pj (AU) ,  of finding a chain dissolved in the system 
with an energy AU: 

(10) 
Equation (10) is, in principle, exact, as is equation (9). However, numerically the two 
expressions are rather different. To see this, consider a chain of hard-sphere segments. For 
long chains, the histograms used in equation (9) will no longer overlap, indicating that the 
results of the simulation are unreliable. In contrast, for hard-core particles equation (IO) 
reduces to equation (8): the histograms of AU in equation (IO) will always overlap at 
ACI = 0, as long as it is possible to insert a harc-sphere chain in the fluid. Hence the 
scheme of de Pablo et nl lacks the additional diagnostic feature that characterizes the 
overlapping-distribution Rosenbluth method given by equation (9). 

3. Results 

As an example we applied both the test-particle Rosenbluth technique and the overlapping- 
distribution Rosenbluth method to calculate the chemical potential of fully flexible chains 
o f t  hard spheres in a hard-sphere fluid at number density pu3, where U is the hard-sphere 
diameter. Chains are inserted into the fluid by means of Rosenbluth sampling. The numbers 

In P I ( A W  = BP" + I n  W)ACI, N .  
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Figure 1. The distributions ~ ( l n  W )  and pl(ln W )  for fully flexible hxd-sphere chains of 
lengih (a) e = 8 and (b) e = 14 in a hard-sphere fluid ai density pv3 = 0.4, 

Table 1. The number of Lnd drreclions. k j .  from nhich the posilion r, of lhc ith scgmenr 1s 
selected. There numbers m chosen such rhu Ihc cficlcncy oflhc chermwl-porenrrd cdculauonr 
IS optimized 35 explainid in 121 

8 D. -0 .4  D* -0.5 i D* = 0.4 P' -0.5 

2 9  25 9 29 69 
3 12 31 10 32 79 
4 15 31 11 35 84 
5 17 43 12 38 90 
6 20 48 13 41 95 
I 23 57 14 44 100 
8 26 64 

of trial directions, ki ,  from which the position r; of the ith segment is taken, are listed in 
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Figure Z The functions f(ln W )  = PO@ W )  + t i n  W, p@ W )  = pt(ln W) - 1. In W, and 
gun W) - f (in W )  for fully flexible chains of hard spheres of length (a) f. = 8 and (b) e = 14 
in a hard-sphere fluid at density pa3 = 0.4. The dashed lines denote the value for pfi" lhat is 
calculated using the test-particle Rosenbluth method. 

table 1 and are chosen such that the efficiency of the chemical-potential calculations is 
optimized. In a separate publication [Z] we show how to determine the optimal ki values. 
We used the test-particle Rosenbluth method (equation (8)) to calculate the excess chemical 
potential from the average of the Rosenbluth weights of the inserted chains. We have 
also calculated the excess chemical potential ffom equation (9), the overlapping-distribution 
Rosenbluth method. To this end, a histogram of the Rosenbluth weights of the inserted 
chains, p& W ) ,  was constructed for a range of values of In W .  In addition, the fluid plus 
the chain was simulated and the Rosenbluth weight of the existing chain was calculated 
with the procedure described in the previous section. These Rosenbluth weights were also 
tabulated, in p i ( l n  W). In figure I we show typical examples of the two distributions 
po(ln W) and p~( In  W) for chains of lengths t = 8 and l = 14, in a hard-sphere fluid 
at density po3 = 0.4. It can be seen that the amount of overlap between the two peaks 
decreases with chain length. For both chain lengths, there is sufficient overlap between 
the two peaks to be able to use equation (9) to calculate the chemical potential accurately. 
For longer chains the two peaks will shift further apart, and beyond a certain length the 
results will no longer be reliable. But the Rosenbluth sampling can break down for another 
reason, depicted by the fact that the distribution p& W )  not only shifts to lower values 
for In W ,  but it also decreases. As p(x) is normalized, this can only happen because a 
finite contribution to the integral of p ( x )  comes from the value x = -cn (i.e. W = 0). 
Conformations with W = 0 are simply failed attempts to generate a trial conformation. The 
longer the chains, the larger the fraction of trial conformations that fails before the full length 
of the molecule is reached. Clearly, if insufficient trial conformations are generated, the 
statistical accuracy of the method breaks down. For the systems and length of simulation that 
we have studied here, the latter breakdown of both the test-particle Rosenbluth method and 
the overlapping-distribution Rosenbluth method occurs before the systematic sampling error 
plays a role. Finally, to calculate the excess chemical potential from equation (9), we follow 
the procedure that is used in the original overlapping-distribution method. l k o  functions, 
f(ln W) = po(ln W) + In W and g(ln W) = p~( In  W) - f In W, are calculated and at 
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every In W value their difference provides an estimate for the excess chemical potential, 
,SpLcx. In figure 2 we show both the functions f(ln W) and g(ln W) and their difference 
g(ln W) - f(ln W) for the same examples as in figure 1. In the same figure we show a line 
at the values corresponding to the values of ppu that are calculated from the test-particle 
Rosenbluth method. The two estimates are in excellent agreement with each other, as they 
should be. We calculated chemical potentials for other chain lengths and densities, with 
both methods. In figure 3 we plot these results and we find that the chemical potential is 
linear with chain length, at least for the range of values that we looked at. 

G CA M Mooij and D Frenkel 

0 '  I 
0 5 10 15 

1 
Figure 3. The chemical potential for a fully flexible chain of C hard spheres in a fluid at density 
pa3 = 0.4 and pa3 = 0.5. calculated both with the test-particle Rosenbluth method ( 0 )  and 
with the overlapping-distribution Rosenbluth method (e). The lines are linear fits through the 
data. 

4. Conclusions 

We have shown how to combine the overlapping-distribution method for calculating 
chemical potentials with the Rosenbluth sampling technique for continuously deformable 
chain molecules. The advantage of this technique over the test-particle Rosenbluth 
method 19, 111 is that it is possible to detect systematic sampling errors that can occur 
when the sampling is restricted to regions of configurational space with a low Rosenbluth 
weight. In the example of fully flexible chains of hard spheres in a hard-sphere fluid, we 
did not find a systematic error. With increasing chain lengths a shift to lower Rosenbluth 
weights of the test-particle insertions does occur, but, even for the longest chains that could 
be inserted during the length of the simulations, this shift still did not cause a systematic 
error in the calculation of the chemical potential. On the contrary, the results of the test- 
particle and the overlapping-distribution Rosenbluth methods are in excellent agreement 
with each other. For longer chains a breakdown of both methods does occur, but this is 
primarily due to the fact that the insertion probability for long chains becomes too low and 
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the statistical error becomes too large to measure the chemical potential in a simulation. 
However, the 

techniques that we discuss can, without loss of generality, be applied to realistic models 
of chain molecules. On the basis of other simulation results (see e.g. [13]), we know that 
Rosenbluth schemes for particle insertion can be applied to realistic models of alkanes as 
long as C48H98. The range of applicability of the overlapping-distribution method discussed 
above is not expected to exceed significantly that of the ‘Widom-Rosenbluth’ particle- 
insertion method. However, as emphasized above, overlapping distribution schemes have 
built-in diagnostics and are therefore safer to use. 

In the present paper we only considered simple model polymers. 
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Appendix 

Here we derive the result presented in equation (9) on which the Rosenbluth-sampling 
overlapping-distribution method is based. 

Chain conformations r of length t are generated following the Rosenbluth sampling 
procedure described in section 2.1. First, a segment is inserted at a random position ro in the 
volume V .  Then the orientations of the subsequent segments, ri (1 < i < t), are selected 
bom sets of ki trial directions {rij}bial with a probability P proportional to the Boltzmann 
weight. These sets of trial directions are in turn chosen at random with a probability Pid 
(equation (3)). The Rosenbluth weight of a conformation is given by equation (6). The 
probability, p~(x), of generating a chain conformation in a fluid of N other chains, with a 
Rosenbluth weight Wr such that In Wr = x. is given by: 

where the symbols have the same meaning as in section 2.1. The term in the angular brackets 
on the last line of equation (AI) can be related to p1 (x), the probability of choosing a chain 
r at random from N + 1 chains and of generating ki - 1 trial directions (rij},t around 
every segment from which a Rosenbluth weight W, for the chain is obtained such that 
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In Wr = x .  Namely, p l ( x )  is given by 
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If we Write out the ensemble averages, denoted by the angular brackets, we obtain the 
desired result 

where Z N  and ZN+~ are the partition functions for a system of N and N + 1 particles 
respectively. Equation (A3) is the result we use in section 2.1. 

In a similar manner, the method proposed by de Pablo etal [12], based on equation (10). 
can be derived. Instead of histograms in the Rosenbluth weights, histograms in energy are 
calculated. Upon inserting chains in a fluid of N chains, the average Rosenbluth factor of 
chains with a specific energy AU is calculated. This average, ( W P ) ~ .  A u ,  is given by 

This average is related to the probability p l ( A U )  of choosing a chain r at random from a 
fluid of N + 1 chains, with an energy AU: 

(As) P I ( A U )  = ( J ( A u  - ur ) )N+ l .  

Again writing out the ensemble averages gives the relation 

This result is used in section 2.1. 
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